3.570 \(\int \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=121 \[ \frac{2 \left (a^2 A+6 a b B+3 A b^2\right ) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 \left (a^2 B+2 a A b-b^2 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 A \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d}+\frac{2 b^2 B \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

[Out]

(2*(2*a*A*b + a^2*B - b^2*B)*EllipticE[(c + d*x)/2, 2])/d + (2*(a^2*A + 3*A*b^2 + 6*a*b*B)*EllipticF[(c + d*x)
/2, 2])/(3*d) + (2*b^2*B*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + (2*a^2*A*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d
)

________________________________________________________________________________________

Rubi [A]  time = 0.317962, antiderivative size = 121, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {2954, 2988, 3023, 2748, 2641, 2639} \[ \frac{2 \left (a^2 A+6 a b B+3 A b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 \left (a^2 B+2 a A b-b^2 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 A \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d}+\frac{2 b^2 B \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]

[Out]

(2*(2*a*A*b + a^2*B - b^2*B)*EllipticE[(c + d*x)/2, 2])/d + (2*(a^2*A + 3*A*b^2 + 6*a*b*B)*EllipticF[(c + d*x)
/2, 2])/(3*d) + (2*b^2*B*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + (2*a^2*A*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d
)

Rule 2954

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 2988

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*c - A*d)*(b*c - a*d)^2*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/
(f*d^2*(n + 1)*(c^2 - d^2)), x] - Dist[1/(d^2*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*Simp[d*(n
 + 1)*(B*(b*c - a*d)^2 - A*d*(a^2*c + b^2*c - 2*a*b*d)) - ((B*c - A*d)*(a^2*d^2*(n + 2) + b^2*(c^2 + d^2*(n +
1))) + 2*a*b*d*(A*c*d*(n + 2) - B*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b^2*B*d*(n + 1)*(c^2 - d^2)*Sin[e + f*x
]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && LtQ[n, -1]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx &=\int \frac{(b+a \cos (c+d x))^2 (B+A \cos (c+d x))}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 b^2 B \sin (c+d x)}{d \sqrt{\cos (c+d x)}}-2 \int \frac{-\frac{1}{2} b (A b+2 a B)-\frac{1}{2} \left (2 a A b+a^2 B-b^2 B\right ) \cos (c+d x)-\frac{1}{2} a^2 A \cos ^2(c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 b^2 B \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 a^2 A \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}-\frac{4}{3} \int \frac{\frac{1}{4} \left (-a^2 A-3 b (A b+2 a B)\right )-\frac{3}{4} \left (2 a A b+a^2 B-b^2 B\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 b^2 B \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 a^2 A \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}-\frac{1}{3} \left (-a^2 A-3 A b^2-6 a b B\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-\left (-2 a A b-a^2 B+b^2 B\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{2 \left (2 a A b+a^2 B-b^2 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 \left (a^2 A+3 A b^2+6 a b B\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 b^2 B \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 a^2 A \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.662784, size = 102, normalized size = 0.84 \[ \frac{2 \left (\left (a^2 A+6 a b B+3 A b^2\right ) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+3 \left (a^2 B+2 a A b-b^2 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+\frac{\sin (c+d x) \left (a^2 A \cos (c+d x)+3 b^2 B\right )}{\sqrt{\cos (c+d x)}}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]

[Out]

(2*(3*(2*a*A*b + a^2*B - b^2*B)*EllipticE[(c + d*x)/2, 2] + (a^2*A + 3*A*b^2 + 6*a*b*B)*EllipticF[(c + d*x)/2,
 2] + ((3*b^2*B + a^2*A*Cos[c + d*x])*Sin[c + d*x])/Sqrt[Cos[c + d*x]]))/(3*d)

________________________________________________________________________________________

Maple [B]  time = 2.04, size = 404, normalized size = 3.3 \begin{align*} -{\frac{2}{3\,d} \left ( 4\,A{a}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+{a}^{2}A\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +3\,A{b}^{2}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -6\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab-2\,A{a}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+6\,Bab\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -3\,B\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}+3\,B\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{2}-6\,B{b}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2*(A+B*sec(d*x+c)),x)

[Out]

-2/3*(4*A*a^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+a^2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2
-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-2*A*a^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+6*B*a*b*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2+3*B*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-6*B*b^2*cos(1/2*d*x+1/
2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B b^{2} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{3} + A a^{2} \cos \left (d x + c\right ) +{\left (2 \, B a b + A b^{2}\right )} \cos \left (d x + c\right ) \sec \left (d x + c\right )^{2} +{\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right ) \sec \left (d x + c\right )\right )} \sqrt{\cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*b^2*cos(d*x + c)*sec(d*x + c)^3 + A*a^2*cos(d*x + c) + (2*B*a*b + A*b^2)*cos(d*x + c)*sec(d*x + c)
^2 + (B*a^2 + 2*A*a*b)*cos(d*x + c)*sec(d*x + c))*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a+b*sec(d*x+c))**2*(A+B*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)